SU-E-J-09: Performance Optimization of Thick, Segmented Scintillators for Radiotherapy Imaging.
نویسندگان
چکیده
PURPOSE Thick segmented scintillators, incorporating a 2-dimensional matrix of optically-isolated scintillator elements, have shown considerable potential for improving the performance of megavoltage active matrix, flat-panel imagers (MV AMFPIs). While over a factor of 20 improvement in DQE at zero spatial-frequency has been demonstrated for prototypes incorporating CsI(Tl) and BGO scintillators, less-than-optimal element-to-element alignment (misalignment) as well as mis-registration to the underlying AMFPI array pixels can result in spatial resolution loss, reducing DQE improvement at higher spatial frequencies. In this presentation, a method to restore spatial resolution and DQE, based on the use of a high resolution AMFPI array along with special binning techniques, is investigated. METHODS The effect of misalignment and mis-registration of segmented scintillators on imaging performance was investigated theoretically and empirically through determination of the modulation transfer function (MTF) and DQE, as well as through realization of reconstructed images of a phantom in a cone-beam CT geometry. The empirical investigation, which was conducted using a 6 MV photon beam, employed a prototype BGO segmented scintillator consisting of 120×60 elements separated by 50 μm-thick septal walls and an element-to-element pitch of 1016 μm. The scintillator was coupled to a higher resolution 127-μm-pitch AMFPI array. RESULTS Misalignment and mis-registration result in significant degradation of spatial resolution, leading to DQE reduction at non-zero spatial frequencies. While mis-registration for a well-aligned scintillator can be overcome through 8×8 binning of the array pixels to match the scintillator elements, any misalignment will affect such binning and lead to spatial resolution loss. However, the use of 'selective' binning, consisting of the selection of those pixels corresponding to the interior locations of each element, improves resolution while preserving DQE. CONCLUSIONS The use of high-resolution AMFPI arrays combined with selective binning allows prototype AMFPIs incorporating thick, segmented scintillators to achieve imager performance limited only by scintillator performance. Work Supported by NIH grant R01-CA051397.
منابع مشابه
Optimization of the design of thick, segmented scintillators for megavoltage cone-beam CT using a novel, hybrid modeling technique.
PURPOSE Active matrix flat-panel imagers (AMFPIs) incorporating thick, segmented scintillators have demonstrated order-of-magnitude improvements in detective quantum efficiency (DQE) at radiotherapy energies compared to systems based on conventional phosphor screens. Such improved DQE values facilitate megavoltage cone-beam CT (MV CBCT) imaging at clinically practical doses. However, the MV CBC...
متن کاملCountering beam divergence effects with focused segmented scintillators for high DQE megavoltage active matrix imagers.
The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ∼1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through the utilization of thick, two-...
متن کاملLow-dose megavoltage cone-beam CT imaging using thick, segmented scintillators.
Megavoltage, cone-beam computed tomography (MV CBCT) employing an electronic portal imaging device (EPID) is a highly promising technique for providing soft-tissue visualization in image-guided radiotherapy. However, current EPIDs based on active matrix flat-panel imagers (AMFPIs), which are regarded as the gold standard for portal imaging and referred to as conventional MV AMFPIs, require high...
متن کاملMonte Carlo investigations of the effect of beam divergence on thick, segmented crystalline scintillators for radiotherapy imaging.
The use of thick, segmented scintillators in electronic portal imagers offers the potential for significant improvement in x-ray detection efficiency compared to conventional phosphor screens. Such improvement substantially increases the detective quantum efficiency (DQE), leading to the possibility of achieving soft-tissue visualization at clinically practical (i.e. low) doses using megavoltag...
متن کاملComparison of ScintSim1 and Geant4 Monte Carlo simulation codes for optical photon transport in thick segmented scintillator arrays
Introduction: Arrays of segmented scintillation crystals are useful in megavoltage x-ray imaging detectors for image-guided radiotherapy. Most previous theoretical studies on these detectors have modelled only ionizing-radiation transport. Scintillation light also affects detector performance. ScintSim1, our previously reported optical Monte Carlo code for such detector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 39 6Part6 شماره
صفحات -
تاریخ انتشار 2012